Magnitudini apparenti
Le stelle che osserviamo sulla volta celeste non solo hanno colori diversi, ma presentano anche splendore variabile da un individuo stellare all'altro. L'effetto è dovuto a due cause che entrano contemporaneamente in gioco: la luminosità intrinseca e la distanza della singola stella. Per poter conoscere la luminosità di una stella si deve quindi cominciare a misurarne lo splendore apparente. È questa una misura relativamente facile, che si esegue generalmente mediante un fotometro applicato a un telescopio. Ma ancor prima che fosse ideato tale strumento, lo splendore apparente di una stella era stato stimato dagli antichi astronomi almeno per le stelle più brillanti visibili a occhio nudo. Questo splendore viene ancor oggi espresso in magnitudini, unità che, a parte i necessari ritocchi dovuti alla maggior precisione delle attuali misure, risale a Ipparco. Le stelle più deboli osservabili a occhio nudo hanno magnitudine apparente 6, le più brillanti 0 le stelle di splendore intermedio sono classificate di magnitudine 1, 2, 3, 4 e 5. Questa scala è stata estesa agli oggetti più brillanti del cielo (il Sole, i pianeti, la Luna) e agli oggetti invisibili a occhio nudo; adottando lo stesso criterio le stelle al limite di visibilità per il grande occhio di 5 metri del telescopio di monte Palomar hanno magnitudine 23. È bene notare che, quanto più elevato è il numero che esprime la magnitudine apparente, tanto più basso è il suo splendore; al limite opposto la magnitudine apparente di oggetti più brillanti delle stelle come Giove, Venere o il Sole assume valori negativi.
Alla base di questa scala di misure sta una legge psicofisica, la legge di Fechner-Weber (dagli scienziati Gustav T. Fechner, 1801-1887, e Wùhelrn E. Weber, 1804-1891): mentre lo stimolo visivo varia in progressione aritmetica la causa che lo produce varia in progressione geometrica. Applicata al caso delle magnitudini stellari, questa legge si traduce nella seguente formula di Pogson (enunciata dall'astronomo inglese Norman R. Pogson, 1829-1891):
dove e indicano le magnitudini e E1 e E2 gli splendori apparenti delle due stelle in esame. Questa legge ci insegna che passando da stelle di prima a stelle di sesta magnitudine, a una differenza di cinque magnitudini corrisponde un rapporto tra gli splendori di 100 volte. Una differenza di una magnitudine corrisponde a una variazione di splendore di volte, una differenza di due a un fattore nella luminosità apparente ecc.
Abbiamo insistito fin quasi alla noia ad utilizzare il sostantivo magnitudine seguito dall'aggettivo apparente. Si preferisce parlare di magnitudini piuttosto che di grandezze per non cadere nell'errore di collegare la grandezza con le dimensioni geometriche delle stelle. La magnitudine poi è apparente perché è una misura dello splendore di una stella e non della sua luminosità vera, che si misura in magnitudini assolute. Per quanto abbiamo detto, bisogna ricavare in maniera indipendente la distanza di una stella per poterne determinare la luminosità.